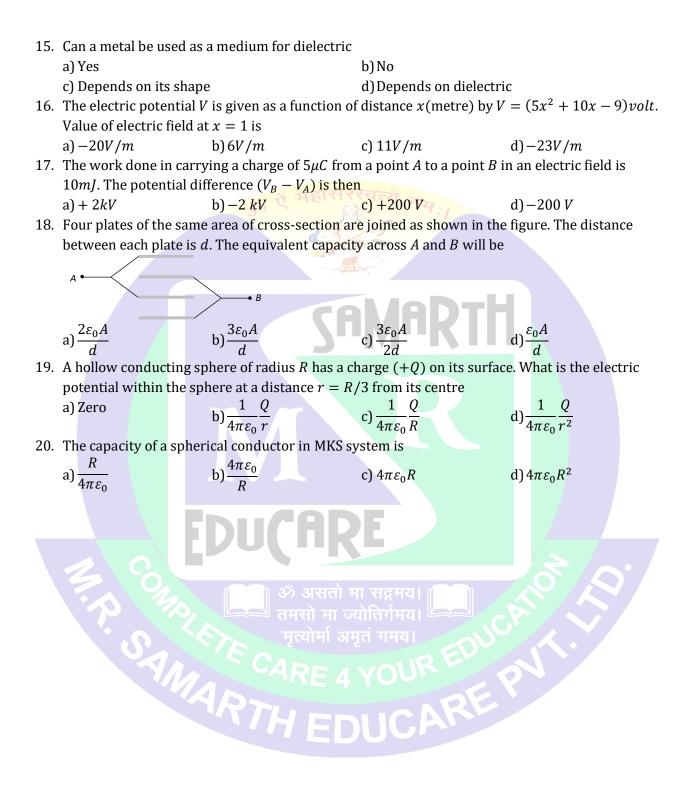


a) -8×10^3 C b) 8.54×10^{-4} C c) 8×10^{-3} C d) 0.85×10^{-6} C

- 7. A sphere of 4 *cm* radius is suspended within a hollow sphere of 6 *cm* radius. The inner sphere is charged to potential 3 *e.s.u.* and the outer sphere is earthed. The charge on the inner sphere is
 - a) 54*e*.*s*.*u*.
 - b) 1/4*e*.*s*.*u*.
 - c) 30e.s.u.
 - d)36e.s.u.
- 8. The angle subtended by a circular disk of diameter 2 cm at a distance 1000 cm from your eye is a) 0.2°
 b) 0.002°
 c) 0.11°
 d) 0.22°
- 9. Given that $q_1 + q_2 = q$. For what ratio q_1/q will the force between q_1 and q_2 be maximum? a) 0.25 b) 0.5 c) 1 d) 2
- 10. Two plates are at potentials -10 V and +30 V. If the separation between the plates be 2 *cm*. The electric field between them is
 - a) 2000 V/m b) 1000 V/m c) 500 V/m d) 3000 V/m
- 11. Consider a system of three charges $\frac{q}{3}$, $\frac{q}{3}$ and $-\frac{2q}{3}$ placed at points A, B and C, respectively, as shown in the figure. Take O to be the centre of the circle of radius R and angle CAB = 60°



- a) The electric field at point 0 is $\frac{q}{8\pi\varepsilon_0R^2}$ directed along the negative x –axis
- b) The Potential energy of the system is zero
- c) The magnitude of the force between the charges at C and B is $\frac{q^2}{54\pi\epsilon_0 R^2}$
- The potential at point 0 is $\frac{q}{12\pi\varepsilon_0 R}$
- 12. There is a uniform electric field of strength $10^3 V/m$ along *y*-axis. A body of mass 1g and charge $10^{-6}C$ is projected into the field from origin along the positive *x*-axis with a velocity 10m/s. Its speed in m/s after 10s is (Neglect gravitation)
 - a) 10

```
b) 5√2 H E D c) 10√2
```

d)20

- 13. A cylindrical capacitor has charge *Q* and length *L*. If both the charge and length of the capacitor are doubled, by keeping other parameters fixed, the energy stored in the capacitor
- a) Remains same b) Increases two times c) Decreases two times d) Increases four times 14. The electrostatic potential inside a charged spherical ball is given by $\phi = ar^2 + b$ where r is the distance from the centre a, b are constants. Then the charge density inside the ball is a) $-6a\varepsilon_0 r$ b) $-24\pi a\varepsilon_0$ c) $-6a\varepsilon_0$ d) $-24\pi a\varepsilon_0 r$

